Immunotherapy for Breast Cancer

Giuseppe Curigliano MD, PhD
Breast Cancer Program
Division of Early Drug Development
Istituto Europeo di Oncologia, Milano, IT
Lymphocytic infiltration assessed by HES and outcome in breast cancer

Loi S, ASCO, 2012
Lymphocytic infiltration assessed by HES and outcome in breast cancer

<table>
<thead>
<tr>
<th>reference</th>
<th>n</th>
<th>trial</th>
<th>endpoint</th>
<th>Subclass analyzed</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denkert (J Clin Oncol, 2010)</td>
<td>840</td>
<td>GBG (G-3)</td>
<td>pCR</td>
<td>all</td>
<td>pCR: 41% in TIL+ BC Validated in G-5</td>
</tr>
<tr>
<td>Loi (J Clin Oncol, 2013)</td>
<td>2009</td>
<td>BIG (2-98)</td>
<td>DFS</td>
<td>Preplanned analysis of molecular subtypes</td>
<td>Prognostic impact in TNBC (n=256): HR: 0.31 (0.11-0.84)</td>
</tr>
<tr>
<td>Loi (ASCO 2012)</td>
<td>935</td>
<td>FinnHer</td>
<td>DFS</td>
<td>Preplanned analysis of molecular subtypes</td>
<td>Prognostic impact in TNBC (n=134): HR: 0.31 (0.12-0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Predictive value for trastuzumab efficacy: p=0.02</td>
</tr>
</tbody>
</table>
TIL as risk stratification for TNBC

FinnHer

BIG2-98
<table>
<thead>
<tr>
<th>Factor</th>
<th>levels</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diag.Stage</td>
<td>I-II</td>
<td>146 (52.52)</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>132 (47.48)</td>
</tr>
<tr>
<td>N.grp</td>
<td><=3</td>
<td>62 (21.45)</td>
</tr>
<tr>
<td></td>
<td>>3</td>
<td>92 (31.83)</td>
</tr>
<tr>
<td></td>
<td>Neg</td>
<td>135 (46.71)</td>
</tr>
<tr>
<td>Size_Tumor</td>
<td><=2cm</td>
<td>129 (46.91)</td>
</tr>
<tr>
<td></td>
<td>>2cm</td>
<td>146 (53.09)</td>
</tr>
<tr>
<td>Grade.grp</td>
<td>Grade:1-2</td>
<td>40 (17.78)</td>
</tr>
<tr>
<td></td>
<td>Grade:3</td>
<td>185 (82.22)</td>
</tr>
<tr>
<td>Neo_CHE</td>
<td></td>
<td>142 (48.80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128 (43.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 (5.15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 (2.06)</td>
</tr>
<tr>
<td>ADJ_anthra</td>
<td>Antra:No</td>
<td>243 (87.41)</td>
</tr>
<tr>
<td></td>
<td>Antra:Yes</td>
<td>35 (12.59)</td>
</tr>
<tr>
<td>ADJ_tax</td>
<td>Tax:No</td>
<td>212 (76.26)</td>
</tr>
<tr>
<td></td>
<td>Tax:Yes</td>
<td>66 (23.74)</td>
</tr>
<tr>
<td>grp.SIT</td>
<td><=60</td>
<td>261 (90.31)</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>28 (9.69)</td>
</tr>
</tbody>
</table>

Anthra
Anthra+tax
Other
tax
DFS: IT and/or ST >60% vs >=60%
OS: IT and/or ST >60% vs >=60%
Extensively infiltrated tumors

Gu-Trantien et al, JCI 2013
Correlations between TILs and immune genes in HER2+ BC

Higher levels of TILs

- CXCL9 (\(\rho=0.46, p<0.01\))
- CD8A (\(\rho=0.41, p<0.01\))
- CXCL13 (\(\rho=0.3, p<0.01\))
- IFNG (\(\rho=0.23, p<0.1\))
- CD3D (\(\rho=0.13, p=0.017\))
- IGKC (\(\rho=0.13, p=0.02\))

Scaled expression

Anti-tumor effector immunity

Lower levels of TILs

- IDO1 (\(\rho=0.58, p<0.01\))
- FOXP3 (\(\rho=0.33, p<0.01\))
- PD-L1 (\(\rho=0.25, p<0.01\))
- CTLA-4 (\(\rho=0.22, p<0.01\))
- CD80 (\(\rho=0.15, p=0.005\))
- PD-1 (\(\rho=0.04, p=0.443\))
- VEGFA (\(\rho=-0.22, p<0.01\))

Pro-tumor/immunosuppressive
Correlations between TILs and immune genes

Tumor microenvironment is immunosuppressive, high levels of T effectors and T regs
High levels of lymphocytic infiltrate is associated with benefit from trastuzumab in HER2+ disease

Significant interaction test $p=0.02$
For every 10% increase in TILs, there was increasing benefit to trastuzumab

Loi et al, Annals Oncol 2014
Treatment with Trastuzumab relieves immunosuppression in some way

Loi et al, SABCS 2013
Augmenting T cell responses with trastuzumab

Days after H2N113 tumor inoculation

Background BALB/c MMTV/neu mice

SABCS 2013
A Phase Ib/II study of an anti-PD-1 monoclonal antibody in advanced, trastuzumab-resistant, *ERBB2*-overexpressing breast cancer: PANACEA

Screening: Locally advanced or metastatic breast cancer overexpressing HER2 at diagnosis → Submit an FFPE block from core biopsy for central testing

<table>
<thead>
<tr>
<th>Central Testing:</th>
<th>HER2 by IHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2 neg:</td>
<td>not eligible</td>
</tr>
<tr>
<td>HER2 pos:</td>
<td>Central PD-L1 testing</td>
</tr>
<tr>
<td>PD-L1 neg:</td>
<td>not eligible</td>
</tr>
<tr>
<td>PD-L1 positive:</td>
<td>enrol</td>
</tr>
</tbody>
</table>

Phase Ib: dose finding for lambrolizumab in 3+3 design → **Phase II** at RP2D

<table>
<thead>
<tr>
<th>Treatment in 3 week cycles:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>T: trastuzumab 6mg/kg</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>L: lambrolizumab at RP2D</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Tissue Samples:
- at enrolment: FFPE block
- Fresh frozen block
- **re-biopsy at PD:** FFPE Block
- Fresh frozen block

Blood samples:
- whole blood
- plasma & serum prior to cycles 1, 2, 3, 4, 5 and then every 3 cycles and 6 months post end of tx
Challenges for Therapeutic vaccination

- Endogenous immunity: Features leading to disease eradication versus tolerance
- Stromal elements influencing local immunity
- Therapeutic vaccination: Challenges to achieving sterile immunity versus resetting equilibrium and rescuing a failed host response
Therapeutic vaccination in BC

- Drive setting of clinical trial according to the expression of the antigens in cancer subtype
- Select patients with no or minimal tumor burden
- Perform correlation studies of immunological/clinical response
- Evaluate genetic/immunological profile of responders
Phase I open-label dose-escalation vaccine trial of dHER2 protein with AS15 adjuvant in HER2-overexpressing patients with high-risk breast cancer

- Breast cancer (stage II > 1 N+ or stage III)
- Adjuvant setting after standard treatment
- Herceptest 3+ or FISH positive
- No recurrence
- Adequate LVEF (MUGA scan)
Phase I open-label dose-escalation vaccine trial of dHER2 protein with AS15 adjuvant in HER2-overexpressing patients with high-risk breast cancer

Protein dHER2
1255 AA (185 kDa)

Recombinant truncated protein dHER2
919 AA

dHER2 + AS 15 ASCI

- Antibody target
- T-Cell target

AS 15 Adjuvant system (GSK proprietary)

- CpG
- MPL
- QS21
- Liposome formulation

ECD: Extracellular domain
TM: Transmembrane domain
ICD: Intracellular domain
PD: Phosphorylation domain
TK: Tyrosine kinase domain
Endpoints

• Primary:
 Safety

• Secondary:
 Humoral immunogenicity
 Cell-mediated immunogenicity
 Impact of escalating doses of HER2
<table>
<thead>
<tr>
<th>Cohorts</th>
<th>N</th>
<th>Dose</th>
<th>(Route: IM)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>15</td>
<td>20 µg dHER2/AS15</td>
<td>D 0, 14, 28, 42</td>
<td>(70 & 98)</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>15</td>
<td>100 µg dHER2/AS15</td>
<td>D 0, 14, 28, 42</td>
<td>(70 & 98)</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>15</td>
<td>500 µg dHER2/AS15</td>
<td>D 0, 14, 28, 42</td>
<td>(70 & 98)</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>16</td>
<td>500 µg</td>
<td>W 0, 4, 14, 34, 38</td>
<td></td>
</tr>
</tbody>
</table>
Study design: Treatment

- **Screening**: Week 0
- **Treatment**: 2 weeks, followed by 4 weeks
- **Analysis**: Week 14

<table>
<thead>
<tr>
<th>PBMC</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MUGA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Results

- 304 administrations in 61 patients

- The incidence and intensity of symptoms reported was similar across the study cohorts, which indicates that increasing doses of the dHER2 protein or a different schedule of treatment administration did not lead to a different safety profile
Safety

- No dose relationship toxicity
- 5 patients withdrawn from study for safety reason
- 1 Grade 2 cardiotoxicity (sinus tachycardia)
- 1 Grade 2 fatigue
- 1 patient with Grade 2 headache + myalgia + fatigue
- 2 Grade 1 / 2 asymptomatic decrease in LVEF (12-13%)
Immunogenicity

• For all the antigens investigated, the proportion of seropositive patients and of patients developing an antigen-specific Ab response increased with the dose of the recombinant dHER2 protein.

• At the higher dose level (500 µg), the majority of the patients developed a response to HER2, ECD and ICD after just a few doses of the dHER2 + AS15.
Immunogenicity

Cohort 1 (20 µg)

Cohort 2 (100 µg)

Cohort 3 (500 µg)
Responders anti ECD and anti ICD

% anti-ECD antibody responders

% anti-I CD antibody responders

<table>
<thead>
<tr>
<th>Cohort</th>
<th>% Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort</th>
<th>% Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
</tbody>
</table>
d-HER2 induces antibodies that specifically bind the native HER2 receptor

- The ECD binding ratio seems to increase with the dose of HER2 protein when assessed after the administration of four dHER2 + AS15 doses.
Immunogenicity

- No ADCC activity was detected.
- The HER2 specific CD4+ T-cell responses were assessed by an approach allowing detection of T-cells at frequencies as low as 10^{-5} (1 positive cell in 10^5 T-cells). This method consists of a two-week repeated stimulation of blood lymphocytes with either a pool of overlapping ECD or ICD peptides. This is followed by intracytoplasmic staining for IFNγ and TNFα and analysis by flow cytometry.
Immunogenicity

<table>
<thead>
<tr>
<th>Patient</th>
<th>Anti-ECD CD4⁺</th>
<th>Anti-ECD CD8⁺</th>
<th>Anti-ICD CD4⁺</th>
<th>Anti-ICD CD8⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cohort 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Responders</td>
<td>7/13</td>
<td>3/13</td>
<td>6/13</td>
<td>3/13</td>
</tr>
</tbody>
</table>
Five-year follow-up phase

- Forty-five (92%) of the 49 patients were still alive at the time of the database freeze (DBF, 6 October 2013).
- Four patients were dead.
- Three of the four deceased patients died of breast cancer, for one patient the cause of death was unknown.
Five-year follow-up phase

- Twenty-eight (62%) of the 45 patients with known breast cancer status at the end of the five-year follow-up period were disease-free at the time of DBF.

- 17 (32%) had relapsed and two patients had a new tumor of another histology than breast cancer.
Conclusions

• The dHER2 + AS15 was safe and well tolerated.
• The incidence and intensity of AEs was similar across the study cohorts.
• The dHER2 + AS15 administration schedule with the highest dose of dHER2 protein investigated gave the highest Ab concentrations and the highest rate of responding patients for all the antigens assessed.
Conclusions

- Three patients reported cardiac AEs during the follow-up period. One of these (mitral valve incompetence) was assessed to be possibly related to the study treatment.
- No other SAE was reported during the follow-up period.
- There was a trend for better DFS for patients receiving the highest dose of the dHER2 protein.
Open-label Phase I/II trial of the safety and efficacy of the dHER2 recombinant protein combined with immunological adjuvant AS15 in patients with HER2+ metastatic breast cancer

- Cohort 1: patients receiving the dHER2 + AS15 as first-line therapy of metastatic disease.

- Cohort 2: patients receiving the dHER2 + AS15 as second-line therapy after having received first-line therapy of metastatic disease with trastuzumab, either alone or combined with chemotherapy.
Inclusion Criteria

- A tumor lesion biopsied during or before screening showing either: overexpression of the HER2 protein as determined by IHC or amplification of the HER2 gene as determined by FISH test.
- Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and adequate organ function (bone marrow reserve, renal and hepatic function).
- Baseline left ventricular ejection fraction (LVEF) equal to or greater than the lower limit of normal.
Endpoints

- Safety
- Clinical activity: response according to modified RECIST criteria and TTP
- Immunological response:
 The proportion of patients being anti-dHER2, anti-HER2 ECD and anti-HER2 ICD Ab seropositive.
 Functional activity in vitro, assessed by growth inhibition of HER2-over-expressing breast tumor cells.
 Frequency of cellular immune response in vitro to dHER2, HER2 ECD and HER2 ICD.
Study treatment

Immunization schedule

q2w x 6
q2w x 6
q3w x 6

Cycle 1
Cycle 2
Cycle 3

Weeks
0 2 4 6 8 10
14 16 18 20 22 24
28 31 34 37 40 43

Injection of dHER2 ASCI

Unless progressive disease

→
Forty patients (17 in Cohort 1, 23 in Cohort 2) were enrolled and received at least Dose 1.
The patients’ mean age was 57 with a range from 34 to 76.
Thirty-five of the women were Caucasians and five had another ethnic background.
Fourteen study centers in five countries (Belgium, Colombia, France, Italy, and Peru) enrolled patients.
• The Grade 1 and 2 unsolicited AEs reported by most patients were: back pain, myalgia, arthralgia, pain in extremity, chest pain, injection site pain, asthenia, diarrhea, chills.

• Six Grade 3 AEs were reported and this was the most severe grade observed.

• No cardiac event was reported.
Activity

• One patient in Cohort 1 achieved a CR with a duration of 11 months and one patient in Cohort 2 achieved a PR which lasted for three months.
• Twelve patients had SD as their overall best response to the treatment.
• The duration of the SDs achieved ranged from 18 weeks to 47 weeks.
Activity

Patient with complete response.

Anti-ECD antibody response

CD4 anti-
ECD
ICD

Days

0 50 100 150 200 250 300

0 2000 4000 6000 8000 10000

Positive wells number / 12 wells

cycle 1 cycle 2 cycle 3

Stable Disease CR
Activity

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Categories</th>
<th>Cohort 1 (N = 17)</th>
<th>Cohort 2 (N = 23)</th>
<th>Total (N = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Best response</td>
<td>CR</td>
<td>1</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PR</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>5</td>
<td>31.3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>PD</td>
<td>10</td>
<td>62.5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Cohort 1 = dHER2 + AS15 (1st line)
Cohort 2 = dHER2 + AS15 (2nd line)
CR = Complete response
PR = Partial response
SD = Stable disease
PD = Progressive disease
n = number of patients in a given category
% = n / Number of patients with available results x 100
Thirty-four patients were withdrawn from the dHER2 + AS15 because of disease progression. The median time to progression was 2.8 months in Cohort 1 and 3.4 months in Cohort 2.

Four patients died during the study, three of breast cancer progression and one of an unrelated SAE (pulmonary embolism).
Figure 2 Kaplan-Meier curve for time to progression (TTC)

Median:
- Cohort 1: 2.8 [95%CI: 2.3 - 8.4]
- Cohort 2: 3.4 [95%CI: 1.4 - 5.2]

Number at risk:
- Cohort 1: 17 14 7 5 4 3 2 2 2 2 2 2 2 1 0
- Cohort 2: 23 18 11 9 5 5 3 2 2 2 2 1 0
• All the patients in Cohort 1 receiving the dHER2 + AS15 as first-line therapy mounted a humoral immune response against dHER2, HER2 ECD and HER2 ICD.

• The patients in Cohort 2 receiving the dHER2 + AS15 as second-line therapy all showed a humoral immune response against HER2 ICD, while the rate of responders against HER2 ECD was one out of seven, both after Dose 4.
Cohort 1 = dHER2 + AS15 (1st line)
Cohort 2 = dHER2 + AS15 (2nd line)
GMC = geometric mean concentration of Abs
95% CI = 95% confidence interval; LL = Lower limit, UL = Upper limit
Immunogenicity

• There are too few data available to make an assessment of the cell mediated immune response to the dHER2 + AS15 and the impact of the humoral response on tumor cell growth.
Conclusions

- The study met the protocol specified criterion for acceptable safety, namely < 10% of the patients in each cohort reporting a Grade 3 or higher AE, assessed by the investigator to be possibly treatment related.
- The study met the protocol specified criterion for acceptable clinical activity, namely to achieve at least one objective clinical response (CR or PR) in each cohort.
- The immunogenic character of the dHER2 + AS15 was demonstrated.
Antigens in BC subtypes

- **Lobular**: Highly endocrine-responsive
- **Highly endocrine-responsive**: WT1/NY-ESO-1, WT1/PRAME, NY-ESO-1/PRAME, WT1/NY-ESO-1/PRAME
- **HER2 positive**: WT1/NY-ESO-1, WT1/PRAME, NY-ESO-1/PRAME
- **Moderately endocrine-responsive**: WT1/NY-ESO-1, WT1/PRAME, NY-ESO-1/PRAME, WT1/NY-ESO-1/PRAME
- **Triple Negative**: WT1/NY-ESO-1, WT1/PRAME, NY-ESO-1/PRAME, WT1/NY-ESO-1/PRAME

![Bar chart showing the number of cases for different BC subtypes](chart.png)
Post neoadjuvant clinical setting
IMPULSE trial

- **Neoadj ChemoR/**: 35%
- **TNBC**: 65%
- **Surgery**: 40% **pCR**
 - **no pCR**: 60%
- **Chemotherapy & ASCI**: 3 w
 - **ASCI alone**: 3 m
- **Placebo**: (5q3week – 8q3months)
- **R**: 1
 - **ChemoR/ * (max 6q3week)**
 - **Surgery**: 2
 - **N+**: X%
 - **N-**: Y%

Chemotherapy
- SoC for “Adjuvant Cohort”
- Authorized for no pCR cohort
 - Chemotherapy & ASCI
 - Chemotherapy alone
 - ASCI alone

PI’s Peter Dubsky and Giuseppe Curigliano
Summary

- Complexity of cancer, tumor heterogeneity and immune escape
- Lack of definitive biomarker(s) for assessment of clinical efficacy of cancer immunotherapies
- Conventional clinical response criteria do not take into consideration differences between response patterns to cytotoxic agents and immunotherapies
- Desperately need for clinical trials
Thank you

Labs
Luisa Lanfrancone
Saverio Minucci
Maria Rescigno
Luca Mazzarella
Angelo Cicalese
Daniela Bossi

Curigliano Group
Carmen Criscitiello
Angela Esposito
Marzia Locatelli
Ida Minchella

Research Nurses Head
Alessandra Milani

My mentor
Aron Goldhirsch

Data Manager
Laura Adamoli
Sabrina Boselli
Valeria Bianchi
Valeria Bertolotti